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Lecture 1. Geomorphology and Its Tools

An overview of what geomorphology is, how we do It,
|and why it matters
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Intended Learning Outcomes

By the end of the lecture, you should be able to:

1)Understand what geomorphology is and what disciplines it draws
from

2)Explain how interactions among the geosphere, hydrosphere, and
biosphere influence Earth surface processes at different spatial and
temporal scales

3)ldentify the tools that geomorphologists use to understand the
form, changes, and history of Earth’s surface, including: i) direct field
observations and ii) indirect chemical, mathematical, physical, and
Isotopic approaches

Ad)Demonstrate how geomorphology data can be applied to solve
‘real-world” problems for society
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1) Introduction: What is Geomorphology and Why do we care?
2) Earth’s Dynamic Surface

Geosphere

Hydrosphere

Biosphere

Landscapes: Spatial and Temporal Scales
Unifying Concepts

eomorphologist’s Tool Kit

Space: Characterizing Earth’s surface
Time: Dating Methods

Measuring Rates of Geomorphic Processes
Physical Models

Proxy Records

3)

G wWNEQOMONER



Imperial College
London

1. What is geomorphology?

Study of processes shaping Earth’s surface and

landforms and deposits they produce

(Gilbert,
1877)
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1. What is Geomorphology? (cont)

Multi-disciplinary:

1) Geology
2) Physics
3) Chemistry
4) Biology
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1. Why do we care?

Earthquakes

Coastal
Floods erosion
Landslides Rock falls
Debris flows e
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2. Earth’s Dynamic Surface

Constantly changing and evolving:

Endogenic processes

Exogenic processes
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2.1Geosphere

Plate
tectonics

1) topography

2) rates and
styles

3) rock types
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2.1Geosphere

Density and
thickness
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2.1Geosphere

Lithology (rock type)
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2.2 Hydrosphere

Climate
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2.2 Hydrosphere

' Elevation
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2.3 Biosphere

Variety of scales

Tracks climate zones
-5 broad vegetation zones
-Distinctive properties

Distribution of vegetation

Vegetation
Forest
Shrublands
Savannas
Barren
Croplands
Grasslands
Other/ice
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2.3 Biosphere

Animals - Humans
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2.4 Landscapes
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2.5 Unifying Concepts

3. Material Routing — Source to

Sink

The headwaters of
a drainage basin
are a sediment
source where
weathering breaks
down rocks and
erosional processes
deliver sediment to
streams and rivers.

[ Sources: hillslopes, hollows,
and colluvial channels

B Transport: bedrock and
alluvial channels

[[] Storage: lowland floodplains
and estuaries

[ Export/Sink: marine
environment

Lowland floodplains

and estuaries are
long-term
depositional areas
where sediment
inputs may exceed
sediment outputs.

Sediment making it
through lowland and
estuarine areas to the
coast is exported to the
marine environment,
which is a long-term
sediment sink.
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2.5 Unifying Concepts

4. Force Balance
and Thresholds

-Normal (blue)

pgzcoso
-Shear (red)
pgzsinod

Particle of sediment on streambed

Boulder on hillslope
Friction with ground
surface resisting movement

Shearing component
of gravitational
force driving boulder
downslope

Flowing glacier

al
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down gradient

frictional
resistance ‘
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2.9 Unifying Concepts 4. Force Balance and Thresholds
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2.9 Unifying Concepts 5. Equilibrium and Steady State
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2.9 Unifying Goncents

6. Recurrence
Intervals and
Magnitude-Frequency
Relationships
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3.1Space: Characterizing
, Earth’s Surface

Field Surveys

Active Remote
Sensing

Passive Remote
Sensing

Digital Topography

GPS satellites %
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Ry satellite

Luis Viegas/Fotolia.com

LiDAR
acquisition

o
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USGS/NASA

NASA
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3.2 Dating Methods

Either Relative or Numerical

Dating methods frequently used by geomorphologists

Method

Type

Age Range
(years)

Requirements/Assumptions

Radiocarbon (**C)
Cosmogenic nuclides

Luminescence

U/Th
Dendrochronology
K/Ar
Lichenometry

Amino-acid racemization
Rock weathering
Soil development

Numeric dating
Numeric dating
Numeric dating

Numeric dating
Numeric dating
Numeric dating
Calibrated relative dating

Calibrated relative dating
Relative dating
Relative dating

10%to § X 10*
10% to 10°
10° to 10°

10° to 10°
10" to 10*
10° to 10°
10" to 10°

10° to 10°
10% to 10*
10* to 10°

Organic material present in interpretable geologic
context

Continuous exposure of noneroding surface that
was free of cosmogenic nuclides before exposure

Quartz or feldspar exposed to light or heat before
burial

Carbonate minerals
Wood from trees
Potassium-bearing minerals

Lichens on both unknown and dated calibration
sites

Well-preserved shell material
Dated surfaces for calibration
Dated chronosequence for calibration
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3.2 Time: Dating Methods

1. Relative Dating
Methods

1) Chronosequence

2) Superposition and
Cross-cutting
relationships
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3.2 Time: Dating Methods

1. Relative Dating
Methods (cont.)

3) Landform
Degradation

/ Steep fault scarp

Rapidly eroding
shoulder and scarp

Depositional colluvial
r wedge

Slope decline (rounding)
/ of steep fault scarp

Thickening of
/ colluvial wedge
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3.2 Time: nating MethodS 3) Landform Degradation (cont.)

Young moraine Old moraine

Rounded crest
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3.2 Time: Dating Methods

Weathering rind

1. Relative Dating
Methods (cont.)

4) Rock Weathering and
Soll Development

5) Rock varnish (aka Yourgerfansuriace R Ocerar sac
desert varnish)
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3.2 Dating Methods

Dating methods frequently used by geomorphologists

Method

Type

Age Range
(years)

Requirements/Assumptions

Radiocarbon (**C)
Cosmogenic nuclides

Luminescence

U/Th
Dendrochronology
K/Ar
Lichenometry

Amino-acid racemization
Rock weathering
Soil development

Numeric dating
Numeric dating
Numeric dating

Numeric dating
Numeric dating
Numeric dating
Calibrated relative dating

Calibrated relative dating
Relative dating
Relative dating

10%to § % 10*
10% to 10°
10° to 10°

10° to 10°
10° to 10*
10° to 10°
10" to 10°

10° to 10°
10% to 10*
10% to 10°

Organic material present in interpretable geologic
context

Continuous exposure of noneroding surface that
was free of cosmogenic nuclides before exposure

Quartz or feldspar exposed to light or heat before
burial

Carbonate minerals
Wood from trees
Potassium-bearing minerals

Lichens on both unknown and dated calibration
sites

Well-preserved shell material
Dated surfaces for calibration
Dated chronosequence for calibration
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3.2 Dating Methods

Thermal
neutron
(¢}

/

v e
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Neutron capture

2. Numerical Dating
Methods

1) Radiocarbon Dating
N(t) = N, e

Where N=number of
nuclides, Ny=initial
number of nuclides,
A=decay constant
(reciprocal of mean life),
t=time
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32 nating Methods 1) Radiocarbon Dating (cont.)

Radiocarbon age (years) — o
= 8033 In (1/pmC) 400

where mean life 5 2801
(t)=8033 years

80

0 80 160 240 320 400

ce 1950 ce 1500
Calendar yr before present
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3.2 Dating Methods

2. Numerical Dating Methods (cont.) 3netizons

Percent nuclide production
rate and/or percent maximum

0% nuclide concentration 100%;\‘\\
. . . | L
2) In-Situ Cosmogenic Nuclides
14 ‘ E
T
1]
=
™
l Percent nuclide production
(Ieft) F|e|d Samp“ng Of . Nuclide concentration
- glacial erratic - c :
. osmogenic
Rock or quartz grain nuclides
Si > A| 2'Ne *He
O 1) = 1OBe 14C 3He

Ca, K, Cl > 3C| 3He

(right) Measurement |
by Accelerator
Mass
Spectrometry
(AMS)

ayoud j10§
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32 na“ng Methods 3) In-Situ Cosmogenic Nuclides (cont.)
I0Be (atoms) °Be (atoms) Total 1°Be (atoms) 10Be (atoms) _
°Be (atoms) X N in sample Quartz (g) ~— N (atoms/g)

Exposure dating

Forward model: Inversion: t = N/P

N =Pt A observed N -

N concentration (atoms/g)
P production (atoms/g/yr) :
t exposure time (yr) inferred t

Erosion Rates

P, = production rate at surface (atoms/qg/yr)
& = erosion rate (g/cm?/yr)

A = decay constant ( /yr)

Ay, = attenuation length for spallation (g/cm?)
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Integration time

1. Measurements of mean

3. Mean daily discharge
daily stage height
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Intermediate Timescales (X
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4) Natural basins
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3.4 Physical Models

1) Analog experiments
« Scaling

2) Numerical Models
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3.9 Proxy Records

Cannot be
Interpreted directly

Rely on transfer
functions
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Lecture Summary

Geomorphology is the study of the processes shaping Earth’s surface and
the landforms and deposits that they produce. Geomorphologists
observe and interpret landscapes in order to understand how processes
shape Earth'’s surface, decipher Earth history, and recognize, mitigate,
and manage impacts of environmental hazards on society.

Geomorphology is synthetic and draws from geology, physics,
chemistry, and biology.

Earth’s surface is dynamic and shaped by processes driven by interactions
among the geosphere, hydrosphere, and biosphere; processes that

operate over multiple temporal and spatial scales and are linked by
unifying concepts.

Geomorphologists use a variety of direct and indirect tools to observe and
reconstruct Earth’s surface processes and history, including observations
of Earth’s surface, methods allowing quantification of dates and rates
of processes, physical models, and proxy records.
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